

MATEMATHKA

√ ВСЕ ТЕМЫ ШКОЛЬНОГО КУРСА

✓ ТРЕНИРОВОЧНЫЕ ЗАДАНИЯ

√ ответы и комментарии

УДК 373:51 ББК 22.1я721 У28

Удалова, Наталья Николаевна.

У28 Математика / Н. Н. Удалова. — Москва : Эксмо, 2019. — 304 с. — (Наглядный справочник для подготовки к ОГЭ и ЕГЭ).

ISBN 978-5-04-093003-6

Справочник содержит теоретические сведения за весь школьный курс математики, а также практические задания с ответами и пояснениями. Весь материал изложен в наглядной и доступной форме, что способствует быстрому усвоению большого количества информации.

Издание окажет помощь старшеклассникам при подготовке к ОГЭ и ЕГЭ, урокам, различным формам текущего и промежуточного контроля.

УДК 373:51 ББК 22.1я721

[©] Удалова Н.Н., 2018

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
🔚 АЛГЕБРА	5
Числа, корни и степени	5
Основы тригонометрии	20
логарифмы	
Преобразование выражений	35
✓ УРАВНЕНИЯ И НЕРАВЕНСТВА	57
Уравнения	57
Неравенства	91
<u></u> Функции	117
Определение и график функции	117
Элементарное исследование функции	125
Основные элементарные функции	
Начала математического анализа	147
Производная	147
Исследование функций	
Первообразная и интеграл	
° ГЕОМЕТРИЯ	187
Планиметрия	187
Прямые и плоскости в пространстве	204
Многогранники	216
Тела и поверхности вращения	230
Измерения геометрических фигур	239
Координаты и векторы	267
→ ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, СТАТИСТИКИ	
и теории вероятностей	
Элементы комбинаторики	286
Элементы статистики	291
Элементы теории вероятностей	294
🖩 ЗАДАЧИ С ЭКОНОМИЧЕСКИМ СОДЕРЖАНИЕМ	299

АЛГЕБРА

числа, корни и степени

В данном разделе рассматриваются действия с десятичными и обыкновенными дробями, рациональными, иррациональными и действительными числами. Представлены свойства степеней с натуральным, целым, рациональным и действительным показателем.

ЦЕЛЫЕ ЧИСЛА

Натуральные числа (1; 2; 3; 4; 5...), числа, им противоположные (-1; -2; -3; -4; -5...), и число нуль образуют множество **целых чисел**.

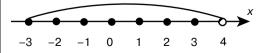
Множество натуральных (от лат. naturalis — природа) чисел имеет специальное обозначение — N; множество целых (нем. Zahl — число) чисел — Z.

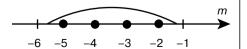
Практические задания

1 Найдите количество целых чисел, удовлетворяющих условию:

a)
$$x \in [-3; 4)$$
.

6)
$$-5.6 < m \le -1.3$$
.

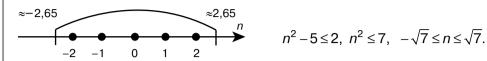




Ответ: 7.

Ответ: 4.

Множество чисел задано формулой $x_n = n^2 - 5$, где $n \in \mathbb{Z}$. Сколько чисел из данного множества не больше 2?



Ответ: 5.

СТЕПЕНЬ С НАТУРАЛЬНЫМ ПОКАЗАТЕЛЕМ

Степенью числа a с натуральным показателем n, бо́льшим 1, называется произведение n множителей, каждый из которых равен a.

Например:
$$3^4 = 3 \cdot 3 \cdot 3 \cdot 3 = 81$$
:

$$0.2^6 = 0.2 \cdot 0.2 \cdot 0.2 \cdot 0.2 \cdot 0.2 \cdot 0.2 = 0.000064$$

 $a^n = \underbrace{a \cdot a \cdot a \cdot \dots \cdot a}_{n \text{ множителей}}$

a — основание степени n — показатель степени

Таблица квадратов

2		Единицы								
Десятки	0	1	2	3	4	5	6	7	8	9
1	100	121	144	169	196	225	256	289	324	361
2	400	441	484	529	576	625	676	729	784	841
3	900	961	1024	1089	1156	1225	1296	1369	1444	1521
4	1600	1681	1764	1849	1936	2025	2116	2209	2304	2401
5	2500	2601	2704	2809	2916	3025	3136	3249	3364	3481
6	3600	3721	3844	3969	4096	4225	4356	4489	4624	4761
7	4900	5041	5184	5329	5476	5625	5776	5929	6084	6241
8	6400	6561	6724	6889	7056	7225	7396	7569	7744	7921
9	8100	8281	8464	8649	8836	9025	9216	9409	9604	9801

Свойства степеней

а¹ = a
$$(a^x)^y = a^{xy}$$

$$a^x \cdot a^y = a^{x+y}$$

$$a^x \cdot b^x = (ab)^x$$

$$\frac{a^x}{a^y} = a^{x-y}, \text{ где } a \neq 0$$

$$\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x, \text{ где } b \neq 0$$

При чётном показателе степени

$$(-a)^n = b$$
 $-a^n = -b$

$$(-3)^4 = 81$$
 $-3^4 = -81$

Таблица степеней

_	Значения п					
a ⁿ	1	2	3	4	5	6
2 ⁿ	2	4	8	16	32	64
3 ⁿ	3	9	27	81	243	729
4 ⁿ	4	16	64	256	1024	4096
5 ⁿ	5	25	125	625	3125	15 625
6 ⁿ	6	36	216	1296	7776	46 656
7 ⁿ	7	49	343	2401	16 807	
8"	8	64	512	4096	32 768	
9"	9	81	729	6561	59 049	

-0	Значения <i>п</i>				
a ⁿ	7	8	9	10	
2 ⁿ	128	256	512	1024	
3 ⁿ	2187	6561	19 683	59 049	

Если в основании степени отрицательное число

 $a^n > 0$, если n — чётное число (2; 4; 6...):

$$(-3)^4 = 81.$$

 $a^n < 0$, если n — нечётное число (1; 3; 5...):

$$(-2)^5 = -32.$$

Практические задания

3

Вычислите.

a)
$$\frac{8^2}{2^5} = \frac{\left(2^3\right)^2}{2^5} = \frac{2^{3 \cdot 2}}{2^5} = \frac{2^6}{2^5} = 2^{6-5} = 2^1 = 2;$$

6)
$$\frac{6^{25} \cdot 9^{11}}{27^{15} \cdot 4^{12}} = \frac{(2 \cdot 3)^{25} \cdot (3^2)^{11}}{(3^3)^{15} \cdot (2^2)^{12}} = \frac{2^{25} \cdot 3^{25} \cdot 3^{22}}{3^{45} \cdot 2^{24}} = \frac{2^{25} \cdot (3^{25} \cdot 3^{22})}{2^{24} \cdot 3^{45}} = \frac{2^{25} \cdot 3^{47}}{2^{24} \cdot 3^{45}} = \frac{2^{25} \cdot 3^{47}}{2^{24}}$$

Ответ: а) 2; б) 18.

ДРОБИ

Число вида $\frac{m}{n}$, где $m \in Z$, $n \in N$, называют **обыкновенной дробью**.

 $\frac{m}{n} \leftarrow$ числитель \leftarrow знаменатель

Любое число, знаменатель дробной части которого выражается единицей с одним или несколькими нулями, можно представить в виде десятичной дроби.

Например:

$$\frac{3}{10}$$
 = 0,3; $\frac{3}{100}$ = 0,03;

$$2\frac{3}{1000} = 2,003; \frac{-7}{100} = -0,07.$$

Основное свойство дроби

Если числитель и знаменатель дроби умножить (разделить) на одно и то же число, отличное от 0, то получится дробь, равная данной.

$$\frac{a}{b} = \frac{ac}{bc}$$
, где $c \neq 0$

Например:

$$\frac{0,35}{0,4} = \frac{0,35 \cdot 100}{0,4 \cdot 100} = \frac{35}{40} = \frac{7}{8};$$

$$0,3:0,27 = \frac{0,3}{0,27} = \frac{0,3\cdot100}{0,27\cdot100} = \frac{30}{27} =$$

$$=\frac{30:3}{27:3}=\frac{10}{9}=1\frac{1}{9}$$

с обыкновенными дробями

$$\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd}$$

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

$$\frac{a}{b}$$
: $\frac{c}{d} = \frac{ad}{bc}$

Выделение целой части из неправильной дроби:

$$\frac{17}{7} = 2\frac{3}{7} \qquad -\frac{17}{14} \frac{|7|}{2}$$

Перевод обыкновенной дроби в десятичную:

Перевод смешанного числа в неправильную дробь:

$$3\frac{5}{9} = \frac{3 \cdot 9 + 5}{9} = \frac{32}{9}.$$

Чтобы **сложить (вычесть) сме- шанные числа**, надо:

- 1) привести дробные части этих чисел к наименьшему общему знаменателю;
- 2) отдельно выполнить сложение (вычитание) целых частей и отдельно дробных.
- Если при сложении дробных частей получилась неправильная дробь, выделить целую часть из этой дроби и прибавить её к полученной целой части.
- Если дробная часть уменьшаемого меньше дробной части вычитаемого, превратить её в неправильную дробь, уменьшив на единицу целую часть.

Чтобы выполнить **умножение сме- шанных чисел**, надо:

- 1) записать смешанные части в виде неправильных дробей;
- 2) найти произведение числителей и произведение знаменателей этих дробей;
- первое произведение записать числителем, а второе знаменателем.

Чтобы выполнить **деление сме- шанных чисел**, надо:

- 1) записать смешанные части в виде неправильных дробей;
- 2) делимое умножить на число, обратное делителю.

Практические задания

a)
$$2\frac{7^{2}}{9} + 3\frac{5^{3}}{6} = 2\frac{14}{18} + 3\frac{15}{18} = 5\frac{29}{18} = 6\frac{11}{18}$$
;

6)
$$9\frac{7^{1/2}}{15} - 2\frac{5^{1/5}}{6} = 9\frac{14}{30} - 2\frac{25}{30} = 8\frac{44}{30} - 2\frac{25}{30} = 6\frac{19}{30}$$
;

B)
$$7-3\frac{2}{11}=6\frac{11}{11}-3\frac{2}{11}=3\frac{9}{11}$$
; Γ) $3\frac{5}{6}-2=1\frac{5}{6}$.

$$\Gamma$$
) $3\frac{5}{6}-2=1\frac{5}{6}$.

Ответ: a) $6\frac{11}{18}$; б) $6\frac{19}{20}$; в) $3\frac{9}{11}$; г) $1\frac{5}{6}$.

5 Вычислите.

a)
$$2\frac{1}{3} \cdot 4\frac{2}{7} = \frac{7}{3} \cdot \frac{30}{7} = \frac{7 \cdot 30}{3 \cdot 7} = 10$$
; 6) $15 \cdot 2\frac{3}{5} = 15 \cdot 2 + 15 \cdot \frac{3}{5} = 30 + \frac{15 \cdot 3}{5} = 30 + 9 = 39$.

Ответ: а) 10; б) 39.

6 Вычислите.

a)
$$2\frac{3}{5}:1\frac{6}{7}=\frac{13}{5}:\frac{13}{7}=\frac{13}{5}\cdot\frac{7}{13}=\frac{7}{5}=1\frac{2}{5};$$
 6) $\frac{3}{7}:14=\frac{3}{7}\cdot\frac{1}{14}=\frac{3}{98};$

Ответ: a) $1\frac{2}{5}$; б) $\frac{3}{98}$; в) 1,25; г) 6.

7 Вычислите.

a)
$$\frac{2\frac{1}{4}}{3\frac{3}{5}} = \frac{2\frac{1}{4} \cdot 20}{3\frac{3}{5} \cdot 20} = \frac{2 \cdot 20 + \frac{1}{4} \cdot 20}{3 \cdot 20 + \frac{3}{5} \cdot 20} = \frac{40 + 5}{60 + 12} = \frac{45}{72} = \frac{5}{8} = 0,625;$$

6)
$$\frac{10}{1\frac{13}{15}} = \frac{10 \cdot 15}{1\frac{13}{15} \cdot 15} = \frac{150}{1 \cdot 15 + \frac{13}{15} \cdot 15} = \frac{150}{15 + 13} = \frac{150}{28} = \frac{75}{14} = 5\frac{5}{14}.$$

Ответ: a) 0,625; б) $5\frac{5}{1}$.

Действия с десятичными дробями

Чтобы сложить (вычесть) десятичные дроби, надо:

- 1) уравнять в этих дробях количество знаков после запятой;
- 2) записать их друг под другом так. чтобы запятая была записана под запятой:
- 3) выполнить сложение (вычитание), не обращая внимания на запятую;
- 4) поставить в ответе запятую под запятой.

Чтобы перемножить две десятичные дроби, надо:

1) выполнить умножение, не обращая внимания на запятые;

2) отделить запятой столько цифр справа, сколько их стоит после запятой в обоих множителях вместе.

Чтобы разделить десятичную дробь на натуральное число, надо:

- 1) разделить дробь на это число, не обращая внимания на запятую:
- 2) поставить частном В запятую. когда кончится деление целой части.

Чтобы разделить число на десятичную дробь. надо:

- 1) в делимом и делителе перенести запятую вправо на столько цифр, сколько их после запятой в делителе:
- 2) выполнить деление на натуральное число.

Практические задания

Вычислите.

a)
$$2,35+11,7=14,05$$
; $+\frac{11,70}{2,35}$
 $14,05$

6)
$$12-10,346=1,654$$
; $-12,000$
 $10,346$
 $1,654$

Ответ: а) 14.05; б) 1.654; в) 29.

Вычислите.

$$3,25 \cdot 2,8 = 9,100 = 9,1.$$
 $\times 3,25$
 $\times 2,8$
 $\times 2600$
 $\times 650$
 $\times 9,100$

Ответ: 9,1.

- B) 36:25=1.44.
- - -<u>25</u> 1,44 100 100

- 11 Вычислите.
- a) 25.6:0.08 = 2560:8 = 320:
- 6) 12.35:2.5=123.5:25=4.94:
- B) $36:0.125=36\ 000:125=288$;
- Γ) 0,8:0,25= $\frac{0,8}{0.25}$ = $\frac{0,8\cdot100}{0.25\cdot100}$ = $3\frac{1}{5}$ =3,2.

Ответ: а) 20,36; б) 3,05; в) 1,44. Ответ: а) 320; б) 4,94; в) 288; г) 3,2.

ПРОЦЕНТЫ

Процентом (лат. per cent — на сотню) называется одна сотая часть величины.

$$1\% = \frac{1}{100}$$
 $100\% = 1$ $3\% = 0.03 (3:100)$ $0.2 = 20\% (0.2.100)$

Практические задания

- Шуба во время распродажи стоит 77 000 рублей. Скидка составляет 30%. Какова была стоимость шубы до распродажи?
- Решение:

77 000 руб.	100% - 30% = 70%
<i>х</i> руб.	100%

$$\frac{77\,000}{x} = \frac{70}{100}$$
; $x = \frac{77\,000 \cdot 100}{70} = 110\,000$ (руб.) — цена шубы до распродажи.

Ответ: 110 000.

Магазин закупает чашки по оптовой цене 120 рублей за штуку и продаёт с наценкой 30%. Какое наибольшее число таких чашек можно купить в этом магазине на 900 рублей?

Решение:

120 руб.	100%
<i>х</i> руб.	100% + 30% = 130%

- 1) $\frac{120}{x} = \frac{100}{130}$; $x = \frac{120 \cdot 130}{100} = 156$ (руб.) цена одной чашки с наценкой:
- 2) $900:156=5,... \Rightarrow 5$ чашек можно купить.

Ответ: 5.

Первый сплав содержит 20% меди, второй — 10% меди. Из этих 14 двух сплавов получили третий сплав массой 200 кг, содержащий 14% меди. Найдите массу первого сплава.

Решение:

Сплав	Масса сплава	Масса меди
1	х	0,2 <i>x</i>
2	200 – x	0,1(200 - x)
полученный	200	$0.2x + 0.1(200 - x)$ $200 \cdot 0.14 = 28$

$$20\% = 0.2$$
; $10\% = 0.1$; $14\% = 0.14$;

$$0,2x+0,1(200-x)=28;$$

$$0,2x+(20-0,1x)=28;$$

$$0.1x = 8$$
:

$$x = 80$$
 (кг) — масса первого сплава.

Ответ: 80.

Билет на поезд до Москвы стоил 2500 рублей, после подорожания 15 стоимость билета составила 3000 рублей. На сколько процентов повысилась цена билета?

. Решение:

2500 руб.	100%
3000 руб.	x%

1)
$$\frac{2500}{3000} = \frac{100}{x}$$
; $x = \frac{3000 \cdot 100}{2500} = 120\%$;

2) 120%-100%=20% — повышение цены.

Ответ: 20%.

РАЦИОНАЛЬНЫЕ ЧИСЛА

Целые и дробные числа (положительные и отрицательные) образуют множество рациональных чисел. Множество рациональных (от лат. ratio — деление) чисел обозначается О.

Любое рациональное число можно представить в виде обыкновенной дроби $\frac{m}{n}$, где $m \in \mathbb{Z}$, $n \in \mathbb{N}$. Получается, что числитель (m) может иметь знак, а знаменатель (п) должен быть положительным числом. Например:

a)
$$5 = \frac{5}{1}$$
; 6) $1.5 = \frac{15}{10} = \frac{3}{2}$.

Любое рациональное число можно записать в виде десятичной дроби либо в виде периодической дроби.

Например:
$$\begin{array}{c|c} -3 & 11 \\ 0 & 0,2727... \\ \hline 30 \\ \hline 6) & \frac{3}{11} = 0,(27). \end{array}$$

$$\begin{array}{c|c} -80 \\ \hline 77 \\ -30 \\ \hline 22 \\ -80 \\ \hline 77 \\ \hline 3 \end{array}$$

Действия с отрицательными и положительными числами

Чтобы **сложить два отрицательных** числа, надо:

1) сложить их модули;

2) поставить перед полученным числом знак «-».

$$-(-a)=a$$

Например:

$$-2+(-7)=-(2+7)=-9.$$

Чтобы сложить два числа с разными знаками, надо:

- 1) из большего модуля слагаемых вычесть меньший:
- 2) поставить перед полученным числом знак того слагаемого, модуль которого больше.

Например:

a)
$$-5+15=+(15-5)=10$$
;

$$6) -17+11=-(17-11)=-6.$$

Чтобы из данного числа вычесть другое, надо к уменьшаемому прибавить число, противоположное вычитаемому.

Например:

a)
$$-2-(-5)=-2+5=3$$
;

$$6)8-9=8+(-9)=-1.$$

Чтобы перемножить (разделить) два числа с разными знаками, надо перемножить (разделить) модули этих чисел и поставить перед полученным числом знак «-». Например:

a)
$$10 \cdot (-3,5) = -35$$
;

6)
$$-0.25 \cdot 4 = -1$$
;

B)
$$-7:2=-3,5$$
.

Чтобы перемножить (разделить) отрицательных числа, два перемножить (разделить) их модули. Например:

a)
$$-7 \cdot (-10) = +70 = 70$$
;

$$6) - 42:(-7) = +6 = 6.$$

СТЕПЕНЬ С ЦЕЛЫМ ПОКАЗАТЕЛЕМ

$$a^{-n} = \frac{1}{a^n}, a \neq 0$$
 $a^0 = 1, a \neq 0$

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n}, a \neq 0, b \neq 0$$

Практические задания

a)
$$5^{-2} = \frac{1}{5^2} = \frac{1}{25}$$
; $6)(-4)^{-3} = \frac{1}{(-4)^3} = -\frac{1}{64}$;

B)
$$(-2)^{-4} = \frac{1}{(-2)^4} = \frac{1}{16};$$
 Γ) $-3^{-6} = -\frac{1}{3^6} = -\frac{1}{729};$

д)
$$\frac{9^{-2} \cdot 36}{16^{-2} \cdot 27} = \frac{\left(3^{2}\right)^{-2} \cdot \left(3^{2} \cdot 2^{2}\right)}{\left(2^{4}\right)^{-2} \cdot 3^{3}} = \frac{3^{-4} \cdot 3^{2} \cdot 2^{2}}{2^{-8} \cdot 3^{3}} = \frac{3^{-2} \cdot 2^{2}}{3^{3} \cdot 2^{-8}} = \frac{2^{8} \cdot 2^{2}}{3^{3} \cdot 3^{2}} = \frac{2^{10}}{3^{5}} = \frac{1024}{243}.$$

Ответ: a)
$$\frac{1}{25}$$
; б) $-\frac{1}{64}$; в) $\frac{1}{16}$; г) $-\frac{1}{729}$; д) $\frac{1024}{243}$.

КОРЕНЬ СТЕПЕНИ n > 1 И ЕГО СВОЙСТВА

Корнем n-й степени $(n \in N, n > 1)$ из действительного числа а называется такое действительное число b, n-я степень которого равна a.

 $\sqrt[m]{a}$ не существует.

если a < 0 и m -чётное число.

Если n — чётное число, то

$$\sqrt[n]{x^n} = |x|.$$

Свойства корней п-й степени

Для любых

 $a \ge 0, b \ge 0, n \ge 2, m \ge 2$:

$$\sqrt[n]{a}\sqrt[n]{b} = \sqrt[n]{ab} \qquad \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}, \ b \neq 0$$

$$(\sqrt[n]{a})^k = \sqrt[n]{a^k}$$

$$\sqrt[n]{ka} = \sqrt[nk]{a}$$

$$\sqrt[n]{ka} = \sqrt[nk]{a}$$

$$\left(\sqrt[n]{a}\right)^k = \sqrt[n]{a^k}$$

$$\sqrt[n]{\sqrt[k]{a}} = \sqrt[nk]{a}$$

Практические задания

Вычислите.

a)
$$\sqrt{625} = 25$$
, т. к. $25^2 = 625$;

б)
$$\sqrt[3]{64} = 4$$
, т. к. $4^3 = 64$;

B)
$$\sqrt[3]{0,000027} = 0,03$$
, T. K. $(0,03)^3 = 0,000027$.

Ответ: а) 25; б) 4; в) 0.03.

18 Вычислите.

a)
$$\sqrt{(3-\sqrt{2})^2} = |3-\sqrt{2}| = 3-\sqrt{2}$$
, т. к. $3 > \sqrt{2}$;

б)
$$\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2} = \left|\sqrt{3}-\sqrt{5}\right| = \sqrt{5}-\sqrt{3}$$
, т. к. $\sqrt{5} > \sqrt{3}$;

B)
$$\sqrt[3]{(3-\sqrt{2})^3} = 3-\sqrt{2}$$
;

Γ)
$$\sqrt{7-4\sqrt{3}} = \sqrt{4+3-4\sqrt{3}} = \sqrt{2^2-2\cdot2\cdot\sqrt{3}+\left(\sqrt{3}\right)^2} = \sqrt{\left(2-\sqrt{3}\right)^2} = |2-\sqrt{3}| = 2-\sqrt{3}$$
, T. K. $2>\sqrt{3}$.

Other: a) $3-\sqrt{2}$: 6) $\sqrt{5}-\sqrt{3}$: B) $3-\sqrt{2}$: C) $2-\sqrt{3}$.

19 Вычислите.

a)
$$\sqrt{7\frac{1}{3}} \cdot \sqrt{66} = \sqrt{\frac{22}{3} \cdot 66} = \sqrt{22 \cdot 22} = 22;$$

6)
$$\sqrt{34^2 - 16^2} = \sqrt{(34 - 16)(34 + 16)} = \sqrt{18 \cdot 50} = \sqrt{9 \cdot 2 \cdot 2 \cdot 25} = 3 \cdot 2 \cdot 5 = 30.$$

Ответ: а) 22; б) 30.

С РАЦИОНАЛЬНЫМ ПОКАЗАТЕЛЕМ И ЕЁ СВОЙСТВА

Пусть a > 0, $\frac{m}{n}$ — рациональное чи- $(n \ge 2, m \in \mathbb{Z}, n \in \mathbb{N}),$ СЛО тогда

 $a^{\frac{m}{n}} = \sqrt[n]{a^m}$

Например:

a)
$$7^{\frac{2}{3}} = \sqrt[3]{7^2} = \sqrt[3]{49}$$
;

6)
$$3^{\frac{-4}{5}} = \sqrt[5]{3^{-4}} = \sqrt[5]{\frac{1}{3^4}} = \sqrt[5]{\frac{1}{81}}$$

Все свойства степени с целым показателем верны для степени с люрациональным и положительным основанием.

Если r > 0, то $a^r > 1$

Если r < 0, то $0 < a^r < 1$

0 < a > 1, r, t — рациональные числа

Если r > t. то $a^r < a^t$

Например:

а)
$$3^{\frac{1}{4}} > 3^{\frac{1}{5}}$$
, т. к. $3 > 1$ и $\frac{1}{4} > \frac{1}{5}$;

б)
$$\left(\frac{2}{5}\right)^{\frac{3}{8}} > \left(\frac{2}{5}\right)^{\frac{1}{2}}$$
, т. к. $0 < \frac{2}{5} < 1$ и $\frac{3}{8} < \frac{1}{2}$;

B) $(3,7)^{-2,5} < 1$, T. K. 3,7 > 1, -2,5 < 0.

Практические задания

20 Вычислите.

$$81^{\frac{1}{7}} \cdot 27^{\frac{1}{7}} = \left(81 \cdot 27\right)^{\frac{1}{7}} = \left(3^4 \cdot 3^3\right)^{\frac{1}{7}} = \left(3^7\right)^{\frac{1}{7}} = 3^1 = 3.$$

Ответ: 3.

СВОЙСТВА СТЕПЕНИ С ДЕЙСТВИТЕЛЬНЫМ ПОКАЗАТЕЛЕМ

При любом $x \in R$ и любом a > 0 степень a^x является положительным действительным числом: $a^x > 0$ при $x \in R$, a > 0.

Все свойства степени с рациональным показателем верны для степени с действительным показателем.

Практические задания

a)
$$\left(9^{\sqrt{26}-5}\right)^{\sqrt{26}+5} = 9^{(\sqrt{26}-5)(\sqrt{26}+5)} = 9^{\left(\sqrt{26}\right)^2-5^2} = 9^{26-25} = 9;$$

$$6) \ 7^{5\sqrt{5}-1} \cdot 7^{1-3\sqrt{5}} : 7^{2\sqrt{5}-1} = 7^{(5\sqrt{5}-1)+(1-3\sqrt{5})-(2\sqrt{5}-1)} = 7^{5\sqrt{5}-1+1-3\sqrt{5}-2\sqrt{5}+1} = 7^1 = 7;$$

B)
$$\frac{5^{\sqrt{7}} \cdot 6^{\sqrt{7}}}{30^{\sqrt{7}-2}} = \frac{(5 \cdot 6)^{\sqrt{7}}}{30^{\sqrt{7}-2}} = \frac{30^{\sqrt{7}}}{30^{\sqrt{7}-2}} = 30^{\sqrt{7}-(\sqrt{7}-2)} = 30^{\sqrt{7}-\sqrt{7}+2} = 30^2 = 900.$$

Ответ: а) 9; б) 7; в) 900.

22 Вычислите.

a)
$$\frac{\sqrt{3} - \sqrt{2}}{3^{\frac{1}{4}} + 2^{\frac{1}{4}}} = \frac{3^{\frac{1}{2}} - 2^{\frac{1}{2}}}{3^{\frac{1}{4}} + 2^{\frac{1}{4}}} = \frac{\left(3^{\frac{1}{4}}\right)^{2} - \left(2^{\frac{1}{4}}\right)^{2}}{3^{\frac{1}{4}} + 2^{\frac{1}{4}}} = \frac{\left(3^{\frac{1}{4}} + 2^{\frac{1}{4}}\right) \cdot \left(3^{\frac{1}{4}} - 2^{\frac{1}{4}}\right)}{3^{\frac{1}{4}} + 2^{\frac{1}{4}}} = 3^{\frac{1}{4}} - 2^{\frac{1}{4}} = 3^{\frac{1}$$

$$\text{6)} \ \frac{2^{-\sqrt{7}}}{0.5^{\sqrt{7}+1}} = \frac{2^{-\sqrt{7}}}{\left(\frac{1}{2}\right)^{\sqrt{7}+1}} = \frac{2^{-\sqrt{7}}}{\left(2^{-1}\right)^{\sqrt{7}+1}} = \frac{2^{-\sqrt{7}}}{2^{-\sqrt{7}-1}} = 2^{-\sqrt{7}-\left(-\sqrt{7}-1\right)} = 2^{-\sqrt{7}+\sqrt{7}+1} = 2^1 = 2;$$

$$\text{B)} \ \frac{2^{2\sqrt{3}}}{0,25^{2-\sqrt{3}}} = \frac{2^{2\sqrt{3}}}{\left(\frac{1}{4}\right)^{2-\sqrt{3}}} = \frac{2^{2\sqrt{3}}}{\left(2^{-2}\right)^{2-\sqrt{3}}} = \frac{2^{2\sqrt{3}}}{2^{-2\left(2-\sqrt{3}\right)}} = \frac{2^{2\sqrt{3}}}{2^{-4+2\sqrt{3}}} = 2^{2\sqrt{3}-\left(-4+2\sqrt{3}\right)} = \frac{2^{2\sqrt{3}}}{2^{-4+2\sqrt{3}}} = 2^{2\sqrt{3}}$$

$$=2^{2\sqrt{3}+4-2\sqrt{3}}=2^4=16;$$

$$\Gamma) \frac{\sqrt{6}}{9^{\frac{1}{5}} \cdot 4^{\frac{1}{4}}} = \frac{(2 \cdot 3)^{\frac{1}{2}}}{\left(3^{2}\right)^{\frac{1}{5}} \cdot \left(2^{2}\right)^{\frac{1}{4}}} = \frac{2^{\frac{1}{2}} \cdot 3^{\frac{1}{2}}}{3^{\frac{2}{5}} \cdot 2^{\frac{1}{2}}} = 3^{\frac{1}{2} - \frac{2}{5}} = 3^{\frac{5}{10} - \frac{4}{10}} = 3^{\frac{1}{10}} = 3^{\frac{1}{10}} = 10\sqrt{3};$$

д)
$$9^{\sqrt{5}} \cdot (0,25)^{-\sqrt{5}} : 6^{2\sqrt{5}} = 9^{\sqrt{5}} \cdot \left(\frac{1}{4}\right)^{-\sqrt{5}} : 6^{2\sqrt{5}} = 9^{\sqrt{5}} \cdot 4^{\sqrt{5}} : \left(6^2\right)^{\sqrt{5}} : \left(6^2\right)^{\sqrt{5}} = 9^{\sqrt{5}} \cdot 4^{\sqrt{5}} : \left(6^2\right)^{\sqrt{5}} : \left(6^2\right)$$

$$=(9\cdot4)^{\sqrt{5}}:36^{\sqrt{5}}=36^{\sqrt{5}}:36^{\sqrt{5}}=1.$$

Ответ: а) $\sqrt[4]{3} - \sqrt[4]{2}$; б) 2; в) 16; г) $\sqrt[10]{3}$; д) 1.

ОСНОВЫ ТРИГОНОМЕТРИИ

посвящён тригонометрическим Раздел функциям, радианной и градусной мере угла. Рассматриваются основные тригонометрические формулы и их применение при упрошении выражений.

СИНУС, КОСИНУС, ТАНГЕНС, КОТАНГЕНС произвольного угла

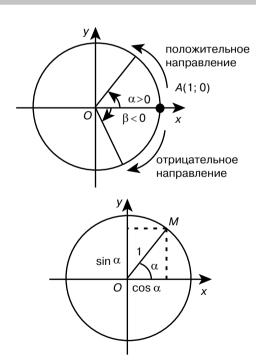
Единичной окружностью В тригонометрии называют окружность радиуса 1 с центром в начале системы координат хОу.

Синусом угла α (sin α) называется ордината точки, полученной поворотом точки (1; 0) вокруг начала координат на угол α .

Косинусом угла α (cos α) называется абсцисса точки, полученной поворотом точки (1; 0) вокруг начала координат на угол α .

Тангенсом угла α (tg α) называется отношение синуса угла к его косинусу.

Котангенсом угла α (ctg α) называется отношение косинуса угла к его синусу.



$$\sin \alpha = y$$
 $\cos \alpha = x$ $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$ $\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$

450°

270° -90° –70°

0°, 360° _x

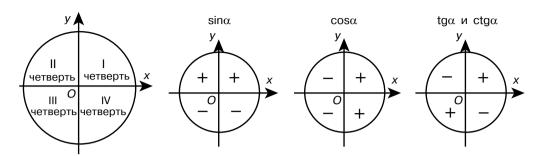
500°

240

180°

540°

Знаки синуса, косинуса, тангенса и котангенса



Практические задания

Определите знаки синуса, косинуса и тангенса.

a) $\alpha = 240^{\circ}$:

 $\alpha = 240^{\circ}$ — III четверть $\Rightarrow \sin \alpha < 0$,

 $\cos \alpha < 0$, $\tan \alpha > 0$;

б) $\beta = 500^{\circ}$:

 $\beta = 500^{\circ}$ — II четверть $\Rightarrow \sin \beta > 0$,

 $\cos \beta < 0$, $\tan \beta < 0$;

B)
$$\gamma = -70^{\circ}$$
;

 $\gamma = -70^{\circ}$ — IV четверть $\Rightarrow \sin \gamma < 0$, $\cos \gamma > 0$, $\tan \gamma < 0$.

OTBET: a) $\sin \alpha < 0$, $\cos \alpha < 0$, $tg\alpha > 0$; b) $\sin \beta > 0$, $\cos \beta < 0$, $tg\beta < 0$; B) $\sin \gamma < 0$, $\cos \gamma > 0$, $\tan \gamma < 0$.

РАДИАННАЯ МЕРА УГЛА

Центральный угол, опирающийся на дугу, длина которой равна радиусу окружности, называется углом в один радиан.